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On the equivalence of linearization and formal symmetries as 
integrability tests for evolution equations 
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Depmment of MatAeematics Tubitak Marmara Research Centre, Po Box 21,41470 Gebze, 
Kocaeli. Turkey 

Received 24 February 1993 

Abstract. Curses‘ integrability test consists of the compatibility of the linearized equation with 
an eigenvalue equatiaa and leads to Lhe recursion aperator. This test is applied to quasilinear 
fifth-order equations and the same classification as the ‘formal symmetry’ method of Mikhailov 
eta1 is obtained. The same classification for polynomial equations is obtained using Fokas‘ tat ,  
i.e. the existence of one higherader symmetry. It is shown Lhal the reclusion operators of a 
specific form can be c o m c t e d  ushg symmetries and conserved covariants 2nd the recursion 
operators for polynomial equations are obtained with ulis method. 

1. Introduction 

Integrability tests for nonlinear evolution equations aim to characterize equations solvable 
by an inverse spectral transformation. The existence of higher-order symmetries, conserved 
densities, recursion operators and Hamiltonian structures are crucial characteristics of these 
equations. A comprehensive study of these methods is given in [l]. 

We recall that symmetries are solutions of the linearized equation and that recursion 
operators are linear operators that send symmetries to symmetries. In [l], the existence 
of an infinite number of symmetries (hence a recursion operator) is given as a definition 
for integrability. Recently two new integrability tests closely related to recursion operators 
have been proposed. One is the ‘formal symmetry’ approach of MikhailovShabatSokolov 
(MsS) [2] and the other is the ‘linearized eigenvalue equation’ of Giirses [3]. 

In section 3. we give a brief review of the integrability test of Fokas [I] and Giirses [3] 
and we apply these tests, respectively, to polynomial and quasilinear fifth-order equations 
to obtain the same classification as in MSS. We show that Giirses’ method is equivalent to 
the formal symmetry method, because the existence of a linear eigenvalue problem gives 
the same conserved density conditions. An advantage of this test is the use of differential 
operators (as opposed to pseudo-differential operators) but the choice of the orders of these 
operators has some subtleties. The availability of alternative methods is believed to be 
useful in further applications. 

In section 4, we consider the direct construction of the recursion operators. We show that 
recursion operators that involve a single integration operation in each term (equation (4.1)) 
can be expressed in terms of conserved covariants and symmetries. Starting with this ansatz 
we obtain the recursion operators of the polynomial equations in the MSS classification in 
an explicit simple form. In fact, the recursion operators of these equations are known 
implicitly, because the recursion operator for the modified Sawada-KoterWup (equation 
(3 .3~))  equation has been obtained in [4], and since all other equations are related to this via 
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Miura-type transformations, their recursion operators can be constructed (Ill, proposition 
2.1). A recursion operator of this type has also been given by Sokolov in [SI. 

2. Basic definitions 

We consider evolution equations of the form ut = F [ u ] ,  where U = u ( x ,  t )  and F [ u ]  is a 
differential function of U, i.e. a differentiable function of the derivatives of U with respect 
to x up to an arbitrary but finite order. Furthermore we assume that F is independent of x 
and f. We will introduce our notation below and define the concepts that will be used in 
this paper. 

For a general review of the symmetry approach to integrable equations and some useful 
results we refer to [1,2,6]. 

In the following, D = d/dx and D-l = y d  it is assumed that U and all its 
partial derivatives vanish at x = --CO. The juxtaposioon of operators denotes composition, 
while subscripts and primes denotes componentwise differentiation of operators. We will 
use the term 'pseudo-differential operator' for the expression C;=-,AiD*. Otherwise, the 
operators that involve integral operators but which are given in closed form will be called 
'intep-differential operators'. 

The linearized operator associated with the differential function F[u]  is denoted by F, 
and defined as F, = (aF/aui)Di where ui = ( a h / a x i )  [2]. 

The differential polynomial F[u] is said to have fued scaling weight s if it transforms 
as F[u]  -+ AsF[u] under the scaling ( x ,  U) + (A- lx ,  Adu) and d is called the weight of U. 

A differential function U is called a symmetry if it satisfies the linearized equation , i.e. 
ol = F.o [2]. A recursion operator is a hear  operator R such that Ro is a symmetry 
whenever o is a symmetry (see [6], p 318). It can also be defined as a solution of the 
operator equation R, + [R, FJ = 0. Recursion operators generate flows that commute with 
F, if the operator has the hereditary property, these flows commute among each other, and 
symmetries are higher-order equations in the hierarchy [l]. 

A differentid function p is called a conserved densify, if there exists a differential 
polynomial q such that pI = Dq.  Similarly y is called a conserved covariant if it satisfies 
the equation y, +F!y = 0, where FJ is the adjoint of F.. These two concepts are related as 
follows: the grdient of a differential function p is defined as SpjSu = Ci(-l)'D'ap/aui, 
the gradients of conserved densities are conserved gradients, but not every conserved 
covariant is a gradient function [l]. 

On the space of differential functions we define an inner product by ( f , g )  = 
l-z(fg)dx. Adjoints of differential operators are defined via this inner product. If R 
is a recursion operator its adjoint Rt satisfies the equation R! - [ R t ,  Fj] = 0 and Rt maps 
conserved covariants to conserved covariants [l]. 

There are slight differences in the terminology used in [1,2,6], cited above. Mainly, 
in fa, symmetries are defined starting from the symmetry group of a differential equation. 
We give a brief review of these concepts in order to relate our definitions to the literature 
on the subject. 

The syn"mtry group of a system of differential equations is a local group of 
transformations of the independent and dependent variables sending solutions to solutions 
(definition 2.23 in 161). A classical s ) m t r y  (or Lie-point symmetry) is an infinitesimal 
generator U of such a group, and it is of the form 
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?his transformation induces transformations of the derivatives of the dependent variables, 
hence we obtain a transformation on the space of the independent varibles, the. dependent 
variables and their derivatives. The prolongation of v denoted by prv, is the infinitesimal 
generator of this transformation, which is of the form 

where the components are given by theorem 2.36 in [6]. Generalized vector fields are vector 
fields of the above form, where the components are now differential functions, depending 
on arbitrary derivatives of the dependent variables. 

It CM be shown that for any generalized symmetry v, one can find its evolutionmy 
representative of the form 

(2.3) 

such that VQ is a symmetry if and only if v is, and Q is called the characteristic of the 
symmetry (proposition 5.5 in [6]). Then, from the prolongation formula (2.39) in [6], the 
+Ls are total derivatives, and the action of the prolongation of UQ on the differential equation 
is just the linearized equation for Q. Thus symmehies in the above sense are characteristics 
of infinitesimal generators. 

3. Comparison of integrability tests 

In section 3.1 we use Fokas' test to obtain a classification of polynomial equations with 
fixed weight. This method gives the polynomial equations in the classification of MSS, 
and an additional equation which is liearizable. In section 3.2, we apply Giirses' test to 
quasilinear equations and we show that it gives the same conserved density conditions as 
MSS, hence it leads to the same classification. We discuss the problems in the choice of the 
operators H and K and their relation to the recursion operator. 

3.1. Clacsr&m'on using the existence of symmetries 
In [l], Fokas considers symmetries, i.e. solutions of the linearized equation, as the basic 
feature of integrable equations. The existence of an infinite number of time independent, 
non-Lie point symmetries is given as a definition for integrability and it is conjectured that 
the existence of one such symmetry is sufficient for integrability. We use this criterion to 
classify the fifth-order polynomial evolution equations ut = F[u], where F hasfrred scaling 
weight under the scaling ( x ,  U) 3 (AX'x, Adu). It can be seen that nonlinearity gives a 
bound on the weight of U and one can only have wt(u) = 0,1,2. For wtfu) = 0, F is 
assumed to be independent of U. For each weight, we write down differential polynomials 
F[u] and u[u] with linear terms ug and ~ 7 ,  and we require that u [ u ]  be a symmetry for 
the equation ut = [U]. From these requirements we determine the coefficients in u[u] and 

The list of fifth-order equations admitting seventh-order symmetries are given by 
the equations (3.1H3.4). The equations obtained by the transformations U u1 and 
U 3 U I  + bu2 are called respectively the potential and modified form of the original one 
and they are denoted by the prefixes p and m. The basic equations in the classification are 
the KdV, Sawada-Kotera (SK) and Kaup (K) equations. Equation ( 3 . 1 ~ )  denoted by (F) is 
linearizable via the transformation U = In U hence both are considered to be integrable 
[Z, 71. We note that the canonical density p4 of MSS is not conserved for these equations 
but that their list excludes equations liiearizable via point transformations. 

Fbl .  

8 
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(i) Linearizable equations: 

(pF) U: = U5 4- ,6(U4Ui + 2 U 3 U 2 )  -!- pZ($u3U:+ Z U ~ U I )  + 7$@3U2U:  + &@U: (3.1~) 

(P) ut = U5 + B(U4U + 3U3UI + 2u3 + B2($43UZ + 2U2UlU + ;U;) 
.I p3(7$uZu3 + &:u~) + $p4u1u4. (3.lb) 

(ii) Nonlinear fifth-order equations admitting a seventh-order symmetry: 

wt(u) = 0 

(3.24 

(3.26) 

(pmKdV) Ut = U5 + p(u3U: + U ~ U I )  + jgp 3 2 5  U1 

(pmSK-K) U, =us + B U 3 U 2  - F ~ J  1 2 2  (UIu3 + u:Ui) + &jjJ4U: 

(mKdV) U: U5 + p ( U 3 U 2 + 4 U 2 U 1 U  + U:) + p24Uiu4 (3.34 

(PKdV) Ut = U5 + p(U3Ui + f& + 6 2 1  3 

Wt(#) = 1: 

(3.36) 

(3.3c) 

(3.34 

(3.3e) 

(mSK-K) Ut = U5 4- p ( U 3 U l  

(PSK) ut = 115 +L%YI + B 

(PK) U: = U5 + B ( $ % ~ I  + U:) + 6  

wt(u) = 2 

U;) - B2(4U3U2 -+ $UzUiU f 4.:) f s 4 & U 1 U 4  

2 1  3 

2 1 6  3 

(KdV) U: = U5 + B(u3u + 2UzUi) 4- & ~ 2 U ~ u 2  

(K) Ut = U5 + B ( U 3 U  4- Z U z U i )  + $b2UiU'. 

(3.40) 

(SKI U: = u5 + ,8 (U3u + UZUI) + jpzuiu2 (3.46) 

(3.4c) 

In section 4 we will obtain recursion operators for equations (3.2)-(3.4), 

3.2. lntegrabiliry tesz using linearization 

In this section we consider applications of the integrability test proposed in [3]. We will 
show that this test with a linear eigenvalue problem is equivalent to the construction of a 
recursion operator in terms of differential operators and applied to fifth-der quasilinear 
equations gives the same classification as MSS. We briefly recall the following: 

(i) Giirses' integrabilty test the equation ut = F [ u ]  is integrable if there exists an 
operator L = C:=oXiL(i), OrdL(') -= OrdL", such that the eigenvalue equation La = 0 
is compatible with the linearized equation U: = F.u. It can be seen that this compatibility 
condition i s  equivalent to the equation (L, + [L, FJ)u = 0. These equations are to hold 
identically in A and D'a fork < OrdL". 

(ii) MSS integrability test: the equation ut = F [ u ]  is integable if there exists a pseudo- 
differential operator such that the operator equation it + [i, F.1 = 0 holds up to 
sufficiently low orders. The operator is called a formal symmetry. 



Integrabiliry tests for evolution equations 7515 

Remark 3.1. Recall that an integro-differential operator R is a recursion operator for the 
equation ut = F iff Rr + [R, Fe] = 0. It is clear that if a recursion operator has a finite 
number of integro-differential terms, the coefficients in its expansion in powers of D-' will 
be determined from the first few terms. Thus in such cases a formal symmetry is just the 
expansion of a recursion operator. 

We will show that under certain general assumptions the existence of an eigenvalue 
problem is equivalent to the existence of a recursion operator. 

Consider an eigenvalue problem, linear in A, i.e. let L = H - h K  and consider the 
compatibility equation 

(HZ - hKt + [H, FJ - h [ K ,  F,])o = 0 (3.5) 

for all a such that at = F*o and Ha - hKa = 0. By premultiplying this with K-' and 
making use of the eigenvalue equation we find that 

( ( K - ' H h  + r (K- lH) ,  F*l)a = 0 (3.6) 

for all eigenfunctions of L. Thus, provided that the eigenfunctions are dense in the 
symmetries K - ' H  is a recursion operator. Conversely, assume that the equation admits 
a recursion operator R. Let o~ be a symmetry, i.e. some differential function which is 
a solution of the linearized equation. Let an = R'UO and define U = ~ ~ - m L - n o n  
as a formal series. Then the equation Ro = ha holds identically in h, which is an 
eigenvalue problem with an integrodifferential operator. Assume, furthermore, that there 
is a differential operator K such that H = K R  is a differential operator (see remark 3.2). 
Multiplying Ro = Ao with K from the left we obtain the compatibility of the eigenvalue 
problem with the linearized equation. Thus the existence of an eigenvalue problem is 
equivalent to the existence of a recursion operator, provided that the eigenfunctions are 
dense in the symmetries and the recursion operator is facrorizable in t e r m  of differential 
operators. 

Remark 3.2. Assume that R is of the form R = RO t E,"=, r&D-'@k, where Ro is a 
differential operator and &S and @kS are differential functions. Then it is always possible 
to find a differential operator K of order N such that Kq5k = 0 for k = 1 , .  . . , N, hence 
KH is a differential operator. In the next section we will show that the recursion operators 
for equations (3.2X3.4) are of this form. 

We applied Giirses' test to fifth-order quasilinear equations of the form u,(x, t )  = 
F[u]  = ug + f(u,  U I ,  U* ,  u3). The classification of these equations have been obtained in 
121, thus our aim is to compare the two methods as far as applicability is concerned. We 
shall describe here the computations in detail and discuss the pitfalls in the applications. 
The existenbe of the operators H and K depends on the existence of certain conserved 
densities, as these are found to be identical to the canonical densities of MSS they are not 
presented here. These conserved density conditions are found at a fairly early stage in the 
computation of the operators H and K. hence the classification problem can be solved with 
a reasonable amount of computation. The complete determination of the operators H and 
K is straightforward but cumbersome. They have been obtained only for the polynomial 
equations in the classification but the results are not presented. The recursion operators €or 
these equations are obtained directly. The computations are done with REDUCE on a PC with 
a 486 microprocessor, using an integration package for differential polynomials [SI. We 
now describe the solution process. 
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In the application of Giirses' test it is very important to start with H and K with 
appropriate orders. Assuming that R is of the form given in remark 3.2, the order of K is 
N. Then the Ord(H)=Ord(K)tOrd(R). Thus as a starting point for the classification we 
need to know the form of the recursion operators to be looked for. For the well known 
Kdv hierarchy Ord(R) = 2 and N = 1. In section 4, we will obtain recursion operators 
for other integrable polynomial equations which are of order 6 with N = 2. It funs out 
that choosing H and K as differential operators of orders respectively 8 and 2 we obtain 
the conserved density conditions of MSS, hence a complete classification. However if the 
orders of H and K differ by 2 the Sawada-Kotera and Kaup hierarchies are missed. 

Once the orders of the operators are determined, the operator equation ((H - AK)I + 
[(H - AK). FJ)a = 0 can be solved interactively. More specifically we parametrize H 
and K as 

H = D8 + h7D7 + h6D6 + h5D5 + h4D4 + h3D2 + hzD' +ha 

K = DZ + kiD + b. (3.7) 

The compatibility equation is a first-order equation in A. The coefficeint of A' and Ao gives 
14 equations which are the coefficients of D'a, k = I ,  . . . , 0. These equations lead to first- 
order equations solvable by quadratures. Finally we obtain kl, ko, and hi for i = 0, . . . , 5  in 
terms o f h s  and h7 and the evolution equations (h& = f [h6.  h.t, U] and (h7)1 = g[h?. h7, U]. 
It remains to solve 3 more equations which are the coefficients of AoPa for k = 0.1,2,3. 
These 6rst two of there equations are relatively simple and, after integration, lead to linear 
equations for h.5 and h7. The coefficients of A0Db and Aoa are nonlinear expressions of 
the derivatives of h.5 and h7. The nonlinear parts are eliminated interactively and they also 
lead to linear algebraic equations after integration. These integrations give two additional 
conserved densities. At this stage, it was not possible to check the compatibility of this 
linear system in its generality due to computer limitations. However, as the conserved 
density conditions (the canonical densities of MSS) are sufficient to give a classification 
the problem is solved in this respect. After this point due to computer limitations, the 
remaining equations are solved only for the polynomial equations in the classification, and 
the operators K and H are obtained. 

We note that both tests have a 'trial and error' component: in the MSS test the order 
of the formal symmetry and, in Giirses' test, the orders of K and H are. not specified. In 
the applications, these parameters should be varied until the resulting conserved density 
conditions give a complete classi6cation. 

4. Construction of the recursion operators 

The integrability tests considered above lead to a recursion operator but its construction 
with the above method is difficult in practice. Here we show that if the recursion operator 
i s  of a specific form (4.1), it is determined in terms of symmetries and conserved densities, 
and we show that the recursion operators for polynomial equations in the MSS classification 
are all of this form. 

The knowledge of the fist few symmetries and conserved covariants provide a clue for 
the degree of the recursion operator, because the recursion operator R sends symmetries 
to symmetries and its adjoint Rt sends conserved covariants to conserved covariants. For 
example the Kdv and mKdV hierarchies have symmetries at every odd order, hence the 
recursion operator of least order that sends local symmetries to local symmetries is expected 
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to be of order 2. On the other hand the Sawada-Kotera and Kaup equations arising from a 
Kid-order spectral problem [9] have symmetries at every odd order that is not a multiple 
of 3. Thus such a recursion operator of least order will be of order 6. A similar statement is 
me for the modified equation of these hierarchies, since they still arise from a third-order 
spectral problem [4]. Thus the order of the recursion operator can be guessed fairly easily. 

The parametrization of the part that depends on integral operators is more subtle. 
Assuming a specific form for the recursion operator, namely that there is only single 
integration operation in each term, we have the following proposition. 

Proposition 4.1. Let R be a recursion operator of the form 

N 
R = R ~ + ~ v ~ D - ~ $ ~  (4.1) 

j=1 

where Ro is a differential operator, and p, and @j are independent differential functions. 
Then the q j s  and $rjs are, respectively, symmetries and conserved covariants, i.e. 

(4.2) 

Proof. Computing the operator equation Rf  + [ R ,  F.] = 0 and making use of the binomial 
expansion for the derivative, and of the identity D-'ruP = ~~=I(-I)'~'(Di-lru)D-'+k + 
(-l)xD-l@kru),  where a is any scalar function, we obtain 

where the differential operators RI and Rz are given by 

(4.3) 

(4.44 

(4.4b) 

Thus provided that the q j s  and $rjs are independent, they shoud satisfy = F,qj and 
(@j)t = -F!tbj. 13 

Thus if the q j s  and @js are, respectively, symmetries and conserved covariants, then the 
equation Rf + [ R ,  F*] = 0 reduces to a differential operator equation, which can be easily 
computed with a symbolic programming language. 

The form of the recursion operator is somewhat easier to guess if the evolution equation 
is differential polynomial and has fixed weight under some scaling ( x ,  U) + ( A - l x ,  Ldu), 
i.e. if Flu]  + ASF[u] under such a kansformation: in such cases the symmetries and 
conserved covariants are also differential polynomials of fixed weight, and the integral part 
of the recursion operator can be constructed, once its order is determined. 
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E m p l e  4.2. The recursion operators for the KdV (U, = 243 + 6uu1) and mKdV (ur = 
u3+6u2u1) equations are respectively R = D2+4u+Zu~D-' and R = D2+4uZ+2ulD-1u. 
These operators are of the form (4.1) with OrdR = 2, N = 1, +I = ul (which is asymmetry 
for any equation uf = F[ul where F [ u ]  is independent of x) ,  and +I being respectively 1 
and U. Note that in each case wt((pi) + w(+~) = 3. 

Except for the KdV hierarchy, all equation in (3.2X3.4) are related to the msKK equation 
(3.3~) by Miura transformations. Thus the recursion operators of all these equations 
should be of order 6. The first few symetries and conserved covariants for each equation 
are computed and the form the recursion operator is determined by the requirement that 
wt(+j)twt(@j) = 7. In all cases there are two terms with integral operators, hence the form 
of the recursion operator is 

R = D6 + r5D5 + r4D4 + rsD2 + r z 9  + rlD + ro + blolD-'$1 + b ~ s z D - ~ @ ~ .  (4.5) 

The equation (4.2) is solved with REDUCE and the results are below. In each equation F[u] 
stands for the differential polynomial in the right-hand side of the corresponding equation 
in (3.2)-(3.4). 

(PmSKK) R = D6+(6uz-6u~)D4+(9u3-18uzu~)D3+(5u~-22~~u~ -13u~-6uzu:+9u1)3 4 2  

+ (U' - 8 ~ 4 ~ 1  - 15U3Uz - 3 ~ 3 ~ :  - 6 u & l +  18u~:)D 

+ (-4U5Ul - 2oU3UzUl+ 2oU3Ui + 20&: - 44) + ZF[U]D-~U~ 

+ 2UlD-'(Urj + 5 U z U 4  - 5U4U: + 5 4  - 2Ou3uzuj - 5 4  4- 5UzU;)  (4.6a) 
4 2  ( m s m )  R = D6+ (6u 1 -6uZ)D4 + ( 15u2 -30~ I u)D3+ ( 1 4 ~ 3  - 4 0 ~ 2 ~  -3 I U: - 6u 1 u2 +9u ) D 

+ ( 6 ~ 4 - 3 0 ~ 3 ~  - 6 3 ~ 2 ~ 1 - 9 ~ 2 ~ ' -  1 8 ~ ~ ~ + 5 4 u l u ~ ) D f ( u s  - 1 2 ~ 4 u - 2 3 ~ 3 ~ ~  

- 3x32  - 15~: - 3 8 u 2 ~ 1 ~  + 3 8 ~ 2 ~ ~  - 6u: + 74~ :~ '  - 4U6) 

- 2F[u]D-'u - ~ u I D - ' ( u ~  + 5U2U1 - 5 U z U 2  - 5 4 ~  + U') (4.66) 

(pSK) R = D6+6~~D4+3~zD3+(8~3+9~~)~+(2uq+3~2~~)D+(3~~+13~3~~ +3~:+4u:) 

- ZD-'(US + 3 ~ 1 ~ 4  + 6 ~ 3 ~ 2  +2u& - 2ulD-'(ur + UZUI) (4.6~) 

(pK) R = D6 + 6u1D4 + 12U2D3 + (y.3 + 9u:)P + ( 5 ~ 4  + 12uzul)D 

+ (9.5 + Y u ~ u ,  + ?U; + 4 4 )  - $D-'(U~ + 6utu4 + 1 2 ~ 3 ~ 2  + 8 ~ 2 . 3  

- ;D-l(~q + 4Up1) (4.64 

(SK) R = D6+ 6uD4 + 9uiD3 + (11~2  + 9U2)D2 + (IOu3 + 2lulu)D 

+ (5u4 + 16uu2 + 624: +4u3) + F[uID-' + 2uID-'(uz + $U') (4.6e) 

(K) R = D6 + 6uD4 + 18ulD3 + (9.2 + 9uZ)D2 + ( T u 3  + 30~1u)D 

+ ( 9 ~ 4 +  ~ U U Z  + ?U: +4u3) + F[u]D-' + !julD-'(uz + 2 ~ ' ) .  (4.6f) 

Remark 4.5. As conserved covariants are generated by repeated applications of Rt to 
a 'starting conserved covariant' say yo, they are more hasic than conserved densities 
for integrability. We note that for certain equations the canonical densities of the MSS 
classification are all trivial. 
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