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Abstract. Giligses® integrability test consists of the compatibility of the linearized equation with
an eigenvalue equation and leads to the recursion aperator. This test is applied to quasilinear
fifth-order equations and the same classification as the ‘formal symmetry’ method of Mikhailov
et al is obtained. The same classification for polynomial equations is obtained using Fokas® test,
i.e, the existence of one higher-order symmetry, It is shown that the recursion operators of a
specific form can be constructed using symmetries and conserved covariants and the recursion
operators for polynomial equations are obtained with this method.

1. Introduction

Integrability tests for nonlinear evolution equations aim to characterize equations solvable
by an inverse speciral trapsformation. The existence of higher-order symmetries, conserved
densities, recursion operators and Hamiltonian structures are crucial characteristics of these
equafions. A comprehensive study of these methods is given in [1].

We recall that symmetries are solutions of the linearized equation and that recursion
operators are linear operators that send symmetries to symmetries. In [1], the existence
of an infinite number of symmetries (hence a recursion operator) is given as a definition
for integrability. Recently two new integrability tests closely related to recursion operators
have been proposed. One is the ‘formal symmetry’ approach of Mikhailov-Shabat—Sokolov
(Ms5) [2] and the other is the ‘linearized eigenvalue equation’ of Giirses [3].

In section 3, we give a brief review of the integrability test of Fokas [1] and Giirses [3]
and we apply these tests, respectively, to polynomial and quasilinear fifth-order equations
to obtain the same classification as in MSS. We show that Giirses’ method is equivalent to
the formal symmetry method, because the existence of a linear eigenvalue problem gives
the same conserved density conditions. An advantage of this test is the use of differential
operators (as opposed to pseudo-differential operators) but the choice of the orders of these
operators has some subtleties. The availability of alternative methods is believed to be
useful in further applications.

In section 4, we consider the direct construction of the recursion operators. We show that
recursion operators that involve a single integration operation in each term (equation (4.1))
can be expressed in terms of conserved covariants and symmetries. Starting with this ansatz
we obtain the recursion operators of the polyromial equations in the MSS classification in
an explicit simple form. In fact, the recursion operators of these equations are known
implicitly, because the recursion operator for the modified Sawada—Kotera/Kaup (equation
(3.3¢)) equation has been obtained in [4], and since all other equations are related to this via
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Miura-type transformations, their recursion operators can be constructed ({1], proposition
2.1). A recursion operator of this type has also been given by Sokolov in {5].

2. Basic definitions

We consider evolution equations of the form u, = Flu), where ¥ = u(x,¢) and Flu] is a
differential function of u, i.e. a differentiable function of the derivatives of 1 with respect
to x up to an arbitrary but finite order. Furthermore we assume that F is independent of x
and . We will introduce our notation below and define the concepts that will be used in
this paper.

For a general review of the symmetry approach to integrable equations and some useful
results we refer to [1,2,6].

In the following, D = d/dx and D! = f*  and it is assumed that # and all its
partial derivatives vanish at x = —o0. The juxtaposition of operators denotes composition,
while subscripts and primes denotes componentwise differentiation of operators. We will
use the term ‘pseudo-differential operator’ for the expression ¥ ;. _ . 4;D!. Otherwise, the
operators that involve integral operators but which are given in closed form will be called
‘integro-differential operators’,

The linearized operator associated with the differential function F[u] is denoted by F,
and defined as F, = 3 1, (8F /3u;)D! where u; = (8'u/dx%) [2).

The differential polynomial F[x] is said to have fixed scaling weight s if it transforms
as Flu] ~ A* Flu} under the scaling (x, u) = (A~'x, A%u) and d is called the weight of u.

A differential function o is called a symmetry if it satisies the linearized equation , i.e.
o; = Fuo [2). A recursion operator is a linear operator R such that Ro is a symmetry
whenever o is a symmetry (see [6], p 318). It can also be defined as a solution of the
operator equation R; 4+ [R, F,] = 0. Recussion operators generate flows that commute with
F, if the operator has the hereditary property, these flows commute among each other, and
symmetries are higher-order equations in the hierarchy [1].

A differential function p is called a conserved density, if there exists a differential
polynomial ¢ such that p; = De. Similarly y is called a conserved covariant if it satisfies
the equation ¥, + Fly =0, where F is the adjoint of F,. These two concepts are related as
follows: the gradient of a differential function p is defined as §p/6u = 3, (—=1)'D*dp/du;,
the gradients of conserved densities are conserved gradients, but not every conserved
covariant is a gradient function [1].

On the space of differential functions we define an inmer product by {f, g} =
ffgo( f2)dx. Adjoints of differential operators are defined via this inner product. If R

is a recursion operator its adjoint R! satisfies the equation R} — [Rf, F]] = 0 and R maps
conserved covariants to conserved covariants [1].

There are slight differences in the terminology used in [1,2,6], cited above. Mainly,
in {6], symmetries are defined starting from the symmetry group of a differential equation.
We give a brief review of these concepts in order to relate our definitions to the literature
on the subject.

The symmetry group of a system of differential equations is a local group of
transformations of the independent and dependent variables sending solutions to solutions
(definition 2.23 in [6]). A classical symmetry (or Lie-point symmetry) is an infinitesimal
generator v of such a group, and it is of the form

Yeiey el @.1)

k=1 a=l
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This transformation induces transformations of the derivatives of the dependent variables,
hence we obtain a transformation on the space of the independent varibles, the dependent
variables and their decivatives. The prolongation of v denoted by pru, is the infinitesimal
generator of this transformation, which is of the form

pro=) gL +Z¢ _+ fo e @2)

k_
where the components are given by theorem 2.36in [61. Generalized vector fields are vector
fields of the above form, where the components are now differential functions, depending
on arbitrary derivatives of the dependent variables.
It can be shown that for any generalized symmetry v, one can find its evolutionary
representative of the form

a 3
vg = Z_; Q5 (2.3)

such that vg is a symmetry if and only if v is, and Q is called the characteristic of the
symmetry (proposition 5.5 in [6]). Then, from the profengation formula (2.39) in [6], the
¢1s are total derivatives, and the action of the prolongation of vy on the differential equation
is just the linearized equation for Q. Thus symmetries in the above sense are characteristics
of infinitesimal generators.

3. Comparison of integrability tests

In section 3.1 we use Fokas’ test to obtain a classification of polynomial equations with
fixed weight. This method gives the polynomial equations in the classification of MSS,
and an additional equation which is linearizable. In section 3.2, we apply Giirses” test to
quasilinear equations and we show that it gives the same conserved density conditions as
MSS, hence it leads to the same classification. We discuss the problems in the choice of the
operators H and K and their refation to the recursion operator.

3.1 Classification using the existence of symmetries

In [1], Fokas considers symmetries, i.e. solutions of the linearized equation, as the basic
feature of integrable equations. The existence of an infinite number of time independent,
non-Lie point symmetries is given as a definition for integrability and it is conjectured that
the existence of one such symmetry is sufficient for integrability. We use this criterion to
classify the fifth-order pofyromial evolution equations u, = F[x], where F has fixed scaling
weight under the scaling (x,u) — (A~'x, A%u). It can be seen that nonlinearity gives a
bound on the weight of # and one can only have wt{u) = 0,1,2. For wi{u) =0, F is
assumed to be independent of x. For each weight, we write down differential polynomials
Flu] and o[u] with linear terms us and u7, and we require that o'[«] be a symmetry for
the equation u; = [u]., From these requirements we determine the coefficients in o [u] and
Flul.

The list of fifth-order equations admitting seventh-order symmetries are given by
the equations (3.1}(3.4). The equations obtained by the transformations & —> u; and
u — uy 4 bu? are called respectively the potential and modified form of the original one
and they are denoted by the prefixes p and m. The basic equations in the classification are
the Kdv, Sawada-Kotera (SK) and Kaup (K) equations. Equation (3.1a) denoted by (F) is
linearizable viz the transformation ¥ = 2 Inv hence both are considered to be integrable
[2,7]. We note that the canonical density py of MSS is not conserved for these equations
but that their list excludes equations linearizable via point transformations.
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(i) Linearizable equations:
(0F) &y = uis + Buatty + 2ustiz) + B Guaui + 2uzur) + Z6°uaud + gzl (3.1)

(F) tr = us + Blugut + 3uzuy + 2u3) + B2(3usu® + 2uzuyu + Lul)
+ B (Eua® + Lulu?) + o frun. (3.18)

(ii) Nonlinear fifth-order equations admitting a seventh-order symmetry:

wit(u) = 0:

(pmKav) u; = us + Busu? + uduy) + Sp%3 (3.22)
(prSK-K) 47 = us + Busuy — 15> (ulus + ufur) + g% (3.26)
wt(u) = 1:

(mKdV) u; = us + ﬂ(ugu + duoui it + u?) -+ ﬁz u;u (3.3a)

@KAV) u; = s + Bluzir + $ul) + BAoku; (3.30)

(mSK-K) 1, = us + Bluzuy + ud) — B*CGusu® + $uowyu + Lud) + p¥onyu (3.3¢)

(pSK) 1y = us + Pusu; + B ul (3.3d)
(PK) 4, = us + B(Guzuy + 1) + 23503 (3.3¢)
wt(u) =

(KAV) ;= ts + Bluzu + 2ugty) + S 8%uu’ (3.4a)
(SK) ¢ = us + Blusu + uguy) + 1 fus? (3.4b)
(K) u, = us + Blusu + Fuzuy) + 5 %u 0. (34c)

In section 4 we will obtain recursion operators for equations (3.2)~(3.4).

3.2, Integrability test using linearizarion

In this section we consider applications of the integrability test proposed in [3]. We will
show that this test with a linear eigenvalue problem is equivalent to the construction of a
recursion operator in terms of differential operators and applied to fifth-order quasilinear
equations gives the same classification as MSS. We briefly recall the following:

(i) Giirses’ integrabilty test: the equation u, = F[u] is integrable if there exists an
operator L = Zk MLD OrdL® < OrdL®, such that the eigenvalue equation Lo = 0
is compatible with the linearized equation o; = F,o. It can be seen that this compatibility
condition is equivalent to the equation (L, 4 [L, F.])o = 0. These equations are to hold
identically in A and D*o for k < OrdL©,

(ii) Mss integrability test: the equation u, = F[u] is integable if there exists a pseudo-
differential operator L such that the operator equation L. + [L, F.] = 0 holds up to
sufficiently low orders. The operator L is called a formal symmetry.
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Remark 3.1, Recall that an integro-differential operator R is a recursion operator for the
equation u; = F iff R, + [R, F,] = 0. It is clear that if a recursion operator has a finite
number of integro-differential terms, the coefficients in its expansion in powers of D~! will
be determined from the first few terms. Thus in such cases a formal symmetry is just the
expansion of a recursion operator.

We will show that under certain general assumptions the existence of an eigenvalue
problem is equivalent to the existence of a recursion operator.

Consider an eigenvalue problem, linear in A, te. let L = H — ALK and consider the
compatibility equation

(Hy ~ AK; +[H, F,] = MK, F]J)o =0 (3.5)

for all & such that 0, = F,c and Ho — AKo = 0. By premuitiplying this with X~ and
making use of the eigenvaive equation we find that

(K~'H); +[(K~'H), F.)o =0 (3.6}

for all eigenfunctions of L. Thus, provided that the eigenfunctions are dense in the
symmetries X ~1H is a recursion operator, Conversely, assume that the equation admits
a recursion operator R. Let op be a symmetry, i.e. some differential function which is
a solution of the linearized equation. Let 0, = R"0p and define ¢ = 3 oo A7"a,
as a formal series. Then the equation Ro = Ac holds identically in A, which is an
eigenvalue problem with an integro-differential operator. Assume, furthermore, that there
is a differential operator X such that A = KR is a differential operator (see remark 3.2).
Multiplying Ro = Ao with K from the left we obtain the compatibility of the eigenvalue
problem with the linearized equation. Thus the existence of an eigenvalue problem is
equivalent 1o the existence of a recursion operator, provided that the eigenfunctions are
dense in the symmetries and the recursion operator is factorizable in terms of differential

operators.

Remark 3.2. Assume that R is of the form R = Ry + Zﬁ:: D™V, where Rp is a
differential operator and ¢s and yys are differential functions. Then it is always possible
to find a differential operator X of order N such that K¢y = O for k = 1,..., N, hence
K H is a differential operator. In the next section we will show that the recursion operators
for equations (3.2)(3.4) are of this form.

We applied Giirses” test to fifth-order quasilinear equations of the form u,(x,t) =
Flul = us + f(u, uy, #2, u3). The classification of these equations have been obtained in
[2], thus our aim is to compare the two methods as far as applicability is concerned. We
shall describe here the computations in detail and discuss the pitfalls in the applications.
The existence of the operators H and K depends on the existence of certain conserved
densities, as these are found to be identical to the canonical densities of MSS they are not
presented here. These conserved density conditions are found at a fairly early stage in the
computation of the operators B and X, hence the classification problem can be solved with
a reasonable amount of computation. The complete determination of the operators  and
K is straightforward but cumbersome. They have been obtained only for the polynomial
equations in the classification but the results are not presented. The recursion operators for
these equations are obtained directly. The computations are done with REDUCE on a PC with
a 486 microprocessor, using an integration package for differential polynomials [8]. We
now describe the solution process.
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In the application of Giirses® test it is very important to start with H and X with
appropriate orders. Assuming that R is of the form given in remark 3.2, the order of X is
. Then the Ord(H)=0rd(X)+Ord{R}. Thus ac a starting point for the classification we
need to know the form of the recursion operators to be looked for. For the well known
Kdv hierarchy Ord(R) = 2 and N = 1. In section 4, we will obtain recursion operators
for other integrable polynomial equations which are of order 6 with N = 2. 1t turns out
that choosing H and K as differential operators of orders respectively 8 and 2 we obtain
the conserved density conditions of MSS, hence a complete classification. However if the
orders of & and X differ by 2 the Sawada—Kotera and Kaup hierarchies are missed.

Once the orders of the operators are determined, the operator equation ({(H — AK), 4
[(H — AK), F,])o = 0 can be solved interactively. More specifically we parametrize H
and X as

H =D+ h7D7 + kD% + sD® + hyD* + 13D* + 1D + B

(3.7
K =D+ ;D + k.

The compatibility equation is a first-order equation in A. The coefficeint of A! and A9 gives
14 equations which are the coefficients of D*¢, k =7, ..., 0. These equations lead to first-
order equations solvable by quadratures. Finally we obtain &y, kg, and h; fori =0,...,51in
terms of kg and A7 and the evolution equations (hg), = Flhg, hy, u] and (k7); = glhy, 712, 4).
It remains to solve 3 more equations which are the coefficients of A°D*o for k =0, 1, 2, 3.
These first two of there equations are relatively simple and, after integration, lead to linear
equations for kg and #7. The coefficients of A’D!o and A% are nonlinear expressions of
the derivatives of ks and s;. The nonlinear parts are eliminated interactively and they also
lead to linear algebraic equations after integration. These integrations give two additional
conserved densities. At this stage, it was not possible to check the compatibility of this
linear system in its generality due to computer limitations. However, as the conserved
density conditions (the canonical densities of MsS) are sufficient to give a classification
the problem is solved in this respect. After this point due to computer limitations, the
remaining equations are solved only for the polynomial equations in the classification, and
the operators X and H are obtained.

‘We note that both tests have a ‘trial and error’ component: in the MsS$ test the order
of the formal symmetry and, in Giirses’ test, the orders of K and H are not specified. In
the applications, these parameters should be varied until the resulting conserved density
conditions give a2 complete classification.

4, Construction of the recursion operators

The integrability tests considered above lead to a recursion operator but its construction
with the above method is difficult in practice. Here we show that if the recursion operator
is of a specific form (4.1), it is determined in terms of symmetries and conserved densities,
and we show that the recursion operators for polynomial equations in the MSS classification
are all of this form.

The knowledge of the first few symmetries and conserved covariants provide a clue for
the degree of the recursion operator, because the recursion operator R sends symmetries
to symmetries and its adjoint R sends conserved covariants to conserved covariants. For
example the Kdv and mKdv hierarchies have symmetries at every odd order, hence the
recursion operator of least order that sends local symmetries to local symmetries is expected
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to be of order 2. On the other hand the Sawada—Kotera and Kaup equations arising from a
third-order spectral problem [9] have symmefries at every odd order that is not a muitiple
of 3. Thus such a recursion operator of least order will be of order 6. A similar statement is
true for the modified equation of these hierarchies, since they still arise from a third-order
spectral problem [4]. Thus the order of the recursion operator can be guessed fairly easily.

The parametrization of the part that depends on integral operators is more subtle.
Assuming a specific form for the recursion operator, namely that there is only single
integration operation in each term, we have the following proposition.

Proposition 4.1. Let R be a recursion operator of the form

N
R=Ry+ Y D7y (4.1)
=1

where Ry is a differential operator, and ¢; and ¥; are independent differential functions.
Then the ¢;s and ;s are, respectively, symmetries and conserved covariants, j.e.

d‘?.r dy; $

i _Fly. 4.2
dr dt B 4.2)
Proof. Computing the operator equation R;+[R, F,} =0 and makmg use of the binomial
expansion for the derivative, and of the identity D™1aD* = 35 (- (Di-1e)D~+* +
(—1¥*D~1(D*a), where « is any scalar function, we obtain

= F*QO_,

N "
0= (Ro) +[Ro, Fu] + 81 — Ra 4+ Z [(@j): - Z kakwj)]D_l ¥;

j=i k=0
N "
+ Z GDJDWI [('/’j)r + Z(—I)ka(iﬁij)] 4.3)
j=1 k=0

where the differential operators Ry and R, are given by
N
N

Thus provided that the ¢;s and ;s are independent, they shoud satisfy (g;); = Fug; and
W) = —Fyp. a

Thus if the ¢;s and ;s are, respectively, symmeitries and conserved covariants, then the
equation R, + [R, F,] = 0 reduces to a differential operator equation, which can be easily
computed with a symbolic programming language.

The form of the recursion operator is somewhat easier to guess if the evolution equahon
is differential polynomial and has fixed weight under some scaling (x,u) = (A 'x, My,
i.e. if Flu] — AfF[u] under such a transformation: in such cases the symmetries and
copserved covariants are also differential polynomials of fixed weight, and the integral part
of the recursion operator can be constructed, once its order is determined.

k
oy (=1 DT (Y F))D (4.40)

i=1

k—1
Fe Yy (f) (Dip,)D* 1y (4.4b)
i=0

.,

TMa EMa

Il
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Example 4.2, The recursion operators for the Kdv (u; = w3 + 6uuy) and mKdv (4; =
u3+6uu,) equations are respectively R = D?+4u+2u;D~! and R = D*+4u?+2u;D"'u,
These operators are of the form (4.1) with OrdR = 2, N = 1, ¢, = uy (which is a symmetry
for any equation u, = F[u] where F[u] is independent of x), and v being respectively 1
and u. Note that in each case wi(g;) + wi(y;) = 3.

Except for the Xdv hierarchy, all equation in (3.2)~(3.4) are related to the mSKK equation
(3.3¢) by Miura transformations. Thus the recursion operators of all these equations
should be of order 6. The first few symetries and conserved covariants for each equation
are computed and the form the recursion operator is determined by the requirement that
wt(g;)+wt(y;) = 7. In all cases there are two terms with integral operators, hence the form
of the recursion operator is

R =D%+7rD° + r4D* + 13D? + r.D? + 1D + ro + b1o1 D71 + baoyD 7y, (4.5)

The equation (4.2) is solved with REDUCE and the results are below. In each equation F[x]
stands for the differential polynomial in the right-hand side of the corresponding equation

in (3.2)~(3.4).
(pmSKK) R = D4 (6ur—6ul)D*+(Qus ~ 18uzu YD+ (54 —22u301 — 13u2~6uzu’~+9u ) D?
+ (us — Suquy — 15u3uz — 3usu’ — 6ulu; + 18u2u3)D
+ (—dusity — 20usuauy + 20“3&‘? - 20u§uf - 4::‘1") + 2F[wlD 2y
+ 21D (ug + Suqusq ~ Su4uf + Sug — 20uzusuy — Su% + Suzu‘{) {4.6a)
(mSKK) R = DP+ (6uy —6u?)D*+(15uy—30u 1) D*+ (14us —40ugu—3 17— 61 1 +9u*)D?
+ (6uq — 30usu —63uqu) — Qusu® — 18u?u +54u1u3)D+(u5 - 12u4u—23u3u?
— 3usu’ — 1542 — 38uguiu + 38ugu’® — 6u; + Tdutu® — 4ub)
- 21!';'[2.¢]D‘l u - 2u1D"1(u4 + Suqu; — Suqu® — Sufu + u’) (4.68)
(SK) R = D%4-6u1D*+3uy D+ (8u3-+ 96D+ (2ua+-3uu: YD+ (Bus+13usu; +3ul+4u3)
— 2D Nug + 3uyuq + Gusus + Zuguf) — 2, D7 (ug + gity) (4.6¢)
(#K) R = D% 4 6u1D* + 12u,D? + (Bus + 9ud)D* + (Sug + 1205u)D
+ Gus + Jugur + Faul + 4u]) — 107 (s + sy + 1203u3 + 8uzu})

— 3D (ug + dugur) (4.6d)

(SK) R = DS 4 6uD* + 9, D° + (11uy + 94)D? + (10us + 21u1u)D

+ (Sus + 16uus + 6u7 + 4u°) + FlulD™' + 20D (uz + u?) (4.6¢)
(K) R = D® + 6uD* + 184, D* + (Luy + 9u)D? + (Lu3 + 30uyu)D

+ Bug+ Luug + Lot + 40%) + FuID™' + Ju DN ua + 267, (46
Remark 4.5. As conserved covariants are generated by repeated applications of RY to
a ‘starting conserved covariant’ say y, they are more basic than conserved densities

for integrability. We note that for certain equations the canonical densities of the MSS
classification are all trivial.
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